Automatic Music Transcription: Breaking the Glass Ceiling

نویسندگان

  • Emmanouil Benetos
  • Simon Dixon
  • Dimitrios Giannoulis
  • Holger Kirchhoff
  • Anssi Klapuri
چکیده

Automatic music transcription is considered by many to be the Holy Grail in the field of music signal analysis. However, the performance of transcription systems is still significantly below that of a human expert, and accuracies reported in recent years seem to have reached a limit, although the field is still very active. In this paper we analyse limitations of current methods and identify promising directions for future research. Current transcription methods use general purpose models which are unable to capture the rich diversity found in music signals. In order to overcome the limited performance of transcription systems, algorithms have to be tailored to specific use-cases. Semiautomatic approaches are another way of achieving a more reliable transcription. Also, the wealth of musical scores and corresponding audio data now available are a rich potential source of training data, via forced alignment of audio to scores, but large scale utilisation of such data has yet to be attempted. Other promising approaches include the integration of information across different methods and musical aspects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Genre Classification by Combination of Audio and Symbolic Descriptors Using a Transcription Systems

Recent research in music genre classification hints at a glass ceiling being reached using timbral audio features. To overcome this, the combination of multiple different feature sets bearing diverse characteristics is needed. We propose a new approach to extend the scope of the features: We transcribe audio data into a symbolic form using a transcription system, extract symbolic descriptors fr...

متن کامل

Mirex 2007 Combining Audio and Symbolic Descriptors for Music Classification from Audio

Recent research in music genre classification hints at a glass ceiling being reached using timbral audio features. To overcome this, the combination of multiple different feature sets bearing diverse characteristics is needed. We propose a new approach to extend the scope of the features: We transcribe audio data into a symbolic form using a transcription system, extract symbolic descriptors fr...

متن کامل

Four Timely Insights on Automatic Chord Estimation

Automatic chord estimation (ACE) is a hallmark research topic in content-based music informatics, but like many other tasks, system performance appears to be converging to yet another glass ceiling. Looking toward trends in other machine perception domains, one might conclude that complex, data-driven methods have the potential to significantly advance the state of the art. Two recent efforts d...

متن کامل

Mirex 2008 Audio Music Classification Using a Combination of Spectral, Timbral, Rhythmic, Temporal and Symbolic Features

The novel approach of combining audio and symbolic features for music classification from audio enhanced previous audio-only based results in MIREX 2007. We extended the approach by including temporal audio features, enhancing the polyphonic audio to MIDI transcription system and including an extended set of symbolic features. Recent research in music genre classification hints at a glass ceili...

متن کامل

Robust Singer Identification in Polyphonic Music using Melody Enhancement and Uncertainty-based Learning

Enhancing specific parts of a polyphonic music signal is believed to be a promising way of breaking the glass ceiling that most Music Information Retrieval (MIR) systems are now facing. The use of signal enhancement as a pre-processing step has led to limited improvement though, because distortions inevitably remain in the enhanced signals that may propagate to the subsequent feature extraction...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012